Problem 1

Monopropellants, like Hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ and Hydrogen Peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ are attractive for rocket propulsion systems because of their relative simplicity and good performance.

Highly concentrated solutions of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water are unstable and decompose violently when exposed to impurities and/or active surfaces. Such an energetic decomposition is desirable in a rocket, but care has to be taken when handling the solution.

The decomposition reaction of 100% pure $\mathrm{H}_{2} \mathrm{O}_{2}$ produces water vapor and oxygen gas.
(a) Write down the reaction for full decomposition.
(b) Calculate the adiabatic flame temperature $\left(\mathrm{T}_{\mathrm{f}}\right)$ using the attached tables. Interpolate or extrapolate, when needed.

NOTES:
$-\mathrm{H}_{2} \mathrm{O}_{2}$ is injected in its liquid state at $298^{\circ} \mathrm{K}$ and has a heat of formation of $-187.9 \mathrm{KJ} / \mathrm{mol}$.
-To help you find an initial T_{f}, use a linear approximation for the enthalpy ($\mathrm{h}=\mathrm{c}_{\mathrm{p}} \mathrm{T}$) with the specific heat values (in $\mathrm{J} / \mathrm{K} / \mathrm{mol}$) of $\mathrm{H}_{2} \mathrm{O}$ and O_{2} at $298^{\circ} \mathrm{K}$.

Solutions. Problem 1

(a) Full decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ should read:

$$
\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}
$$

(b) From the tables read CPO_{2} and $\mathrm{CP}_{\mathrm{H} 2 \mathrm{O}}$ at $298^{\circ} \mathrm{K}$:

$$
\begin{array}{ll}
c p_{\mathrm{O} 2}=29.378 \mathrm{~J} / \cdot \mathrm{K} / \mathrm{mol} & \Delta h_{\mathrm{H} 2 \mathrm{O}}^{o}=291.826 \frac{\mathrm{KJ}}{\mathrm{~mol}} \\
c p_{\mathrm{H}_{2} \mathrm{O}}=33.598 \mathrm{~J} / \mathrm{K} / \mathrm{mol} &
\end{array}
$$

To estimate an initial search temperature ($\mathrm{T}_{1}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{ref}}$):

$$
\begin{aligned}
& -187.9 \frac{\mathrm{KJ}}{\mathrm{~mol}}=\left(c p_{\mathrm{H}_{2} \mathrm{O}} T_{1}+\Delta h_{f_{\mathrm{H}_{2} \mathrm{O}}}^{\circ}\right)+\frac{1}{2}\left(c p_{\mathrm{O} 2} T_{1}\right) \\
& T_{1}=\frac{(-187.9+241.826) \times 1000}{33.598+(0.5) 29.378}=1120 \cdot \mathrm{~K} \quad \text { then } \mathrm{T}_{\mathrm{f}}=1418 \mathrm{~K}
\end{aligned}
$$

Use tables to find $h_{\text {before }}=h_{\text {after }}$

$$
h_{\text {before }}=\frac{-187.9 \mathrm{KJ} / \mathrm{mol}}{0.084 \mathrm{Kg} / \mathrm{mol}}=-5.526 \frac{\mathrm{MJ}}{\mathrm{Kg}}
$$

$h_{\text {after }}$:
start at $1200^{\circ} \mathrm{K}$

$$
h_{\text {after }}=\frac{(34.574-241.826) 1000+0.5(29.768+0) 1000}{1(0.018)+0.5(0.032)}=-5.657 \frac{\mathrm{MJ}}{\mathrm{Kg}}
$$

at $1300^{\circ} \mathrm{K} \quad h_{\text {after }}=\frac{(39.028-241.826) 1000+0.5(38.352+0) 1000}{1(0.018)+0.5(0.032)}=-5.474 \frac{\mathrm{MJ}}{\mathrm{Kg}}$
(need less, more negative)

Answer is between $1200 \cdot K$ and $1300 \cdot \mathrm{~K}$:
Interpolate:

$$
T_{f}=1200+(1300-1200)\left(\frac{5.657-5.526}{5.657-5.474}\right)=\underline{\underline{1271 \cdot K}}
$$

